Sunday, March 8, 2009

○◘○mutualism○◘○

Mutualism

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Hummingbird Hawkmoth drinking from Dianthus. Pollination is a classic example of mutualism.

Mutualism is a biological interaction between two organisms, where each individual derives a fitness benefit, for example increased survivorship. Similar interactions within a species are known as co-operation. It can be contrasted with interspecific competition, in which each species experiences reduced fitness, and exploitation, in which one species benefits at the expense of the other. Mutualism and symbiosis are sometimes used as if they are synonymous, but this is strictly incorrect: symbiosis is a broad category, defined to include relationships which are mutualistic, parasitic or commensal. Mutualism is therefore only one type.

Mutualism plays a key part in ecology and evolutionary biology. For example, mutualistic interactions are vital for terrestrial ecosystem function as more than 70% of land plants rely on mycorrhizal relationships with fungi to provide them with inorganic compounds and trace elements. In addition, mutualism has driven the evolution of much of the biological diversity we see, such as flower forms (important for pollination mutualisms) and co-evolution between groups of species.[1] However mutualism has historically received less attention than other interactions such as predation and parasitism.[2][3]

Measuring the exact fitness benefit to the individuals is not always straightforward, particularly when the individuals can receive benefits from a range of species, for example most plant-pollinator mutualisms. It is therefore common to categorise mutualisms according to the closeness of the association, using terms such as obligate versus facultative. Defining "closeness", however, is also problematic. It can refer to mutual dependency (the species cannot live without one another) or the biological intimacy of the relationship in relation to physical closeness (e.g. one species living within the tissues of the other species).[4]

Contents

[hide]

[edit] Types of relationships

Mutualistic interactions can be thought of as a form of "biological barter"[4] in which species trade resources (for example carbohydrates or inorganic compounds) or services such as gamete, offspring dispersal, or protection from predators.

[edit] Resource-resource relationships

Resource-resource interactions, in which one type of resource is traded for a different resource, are probably the most common form of mutualism; for example mycorrhizal associations between plant roots and fungi, with the plant providing carbohydrates to the fungus in return for primarily phosphate but also nitrogenous compounds. Other examples include rhizobia bacteria which fix nitrogen for leguminous plants (family Fabaceae) in return for energy-containing carbohydrates[5].

[edit] Service-resource relationships

Service-resource relationships are also common, for example pollination in which nectar or pollen (food resources) are traded for pollen dispersal (a service) or ant protection of aphids, where the aphids trade sugar-rich honeydew (a by-product of their mode of feeding on plant sap) in return for defense against predators such as ladybird beetles.

[edit] Service-service relationships

An example of mutual symbiosis is the relationship between Ocellaris clownfish that dwell among the tentacles of Ritteri sea anemones.


Strict service-service interactions are very rare, for reasons that are far from clear.[4] One example is the relationship between sea anemones and anemonefish in the family Pomacentridae: the anemones provide the fish with protection from predators (which cannot tolerate the stings of the anemone's tentacles) and the fish defend the anemones against butterflyfish (family Chaetodontidae) which eat anemones. However, in common with many mutualisms, there is more than one aspect to the biological barter: in the anemonefish-anemone mutualism, waste ammonia from the fish feed the symbiotic algae that are found in the anemone's tentacles.[6][7] Therefore what appears to be a service-service mutualism in fact has a service-resource component. A second example is that of the relationship between some ants in the genus Pseudomyrmex and trees in the genus Acacia, such as the Whistling Thorn and Bullhorn Acacia. The ants nest inside the plant's thorns. In exchange for shelter, the ants protect acacias from attack by herbivores (which they frequently eat, introducing a resource component to this service-service relationship) and competition from other plants by trimming back vegetation that would shade the acacia. In addition, another service-resource component is present, as the ants regularly feed on lipid-rich food-bodies called Beltian bodies that are on the Acacia plant.

In the Neotropics, the ant, Myrmelachista schumanni makes its nest in special cavities on the Duroia hirsute tree. The ant protects the tree with such vehemence that any saplings in the vicinity belonging to other species are killed with formic acid. This selective gardening can be so aggressive that small areas of the rainforest are dominated by Duroia hirsute. These peculiar patches are known by local people as "devil's gardens".[8]

In some of these relationships, the cost of the ant’s protection can be quite expensive. Cordia sp. trees in the Amazonian rainforest have a kind of partnership with Allomerus sp. ants, which make their nests in modified leaves. To increase the amount of living space available, the ants will destroy the tree’s flower buds. The flowers die and leaves develop instead, provisioning the ants with more dwellings. Another type of Allomerus sp. ant lives with the Hirtella sp. tree in the same forests, but in this relationship the tree has turned the tables on the greedy ants. When the tree is ready to produce flowers, the ant abodes on certain branches begin to wither and shrink, forcing the occupants to flee, leaving the tree’s flowers to develop free from ant attack.[8]

[edit] Humans and mutualism

Dogs and sheep were among the first animals to be domesticated.

Humans also engage in mutualisms with other species, including our gut flora (without which we would not be able to digest food efficiently) and domesticated animals such as horses, which provide transportation in return for food and shelter. In traditional agriculture, many plants will function mutualistically as companion plants, providing each other with shelter, soil fertility and the repelling of pests. For example, beans may grow up cornstalks as a trellis, while fixing nitrogen in the soil for the corn, as exploited in the Three Sisters gardening technique. The question how and why species might cooperate has been addressed philosophically by a number of writers. Gilles Deleuze, for example, was interested in the way this questioned the conception of evolutionism and the notion of linear historical progress.[citation needed]

No comments: